1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
keriweiner5755 edited this page 2025-04-02 22:43:54 +00:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled versions varying from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI ideas on AWS.

In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled variations of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that utilizes reinforcement finding out to improve thinking through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A crucial identifying function is its reinforcement learning (RL) action, which was used to fine-tune the model's reactions beyond the basic pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately boosting both significance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, indicating it's geared up to break down complex inquiries and factor through them in a detailed manner. This directed thinking procedure permits the model to produce more accurate, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT capabilities, aiming to create structured reactions while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has recorded the industry's attention as a flexible text-generation design that can be integrated into numerous workflows such as representatives, logical reasoning and data interpretation jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion specifications, making it possible for effective reasoning by routing inquiries to the most appropriate professional "clusters." This approach permits the model to specialize in various problem domains while maintaining overall efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, setiathome.berkeley.edu and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective models to imitate the habits and reasoning patterns of the larger DeepSeek-R1 design, using it as an instructor design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest deploying this design with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid hazardous material, and evaluate models against crucial safety requirements. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce multiple guardrails tailored to various use cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limit boost, develop a limitation increase request and connect to your account team.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For guidelines, see Establish consents to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, avoid hazardous material, and assess models against key security requirements. You can execute security measures for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to examine user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic circulation involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After receiving the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 design.

The model detail page provides important details about the design's capabilities, rates structure, and execution guidelines. You can discover detailed usage directions, consisting of sample API calls and code bits for combination. The model supports different text generation tasks, consisting of material production, code generation, and concern answering, using its support learning optimization and CoT reasoning abilities. The page likewise includes deployment alternatives and licensing details to help you get started with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, choose Deploy.

You will be prompted to set up the implementation details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, get in a variety of instances (between 1-100). 6. For Instance type, choose your circumstances type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can set up sophisticated security and infrastructure settings, including virtual private cloud (VPC) networking, service function authorizations, and encryption settings. For the majority of use cases, the default settings will work well. However, for production deployments, you may desire to examine these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the deployment is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in play area to access an interactive user interface where you can try out various prompts and change design parameters like temperature and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimum outcomes. For example, material for reasoning.

This is an outstanding method to check out the model's thinking and text generation capabilities before integrating it into your applications. The play area offers instant feedback, helping you comprehend how the model responds to various inputs and letting you fine-tune your triggers for optimum outcomes.

You can rapidly check the model in the play area through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to perform reasoning using a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures inference criteria, and sends a demand to produce text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML solutions that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 hassle-free methods: utilizing the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both approaches to assist you choose the approach that best fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design browser displays available designs, with details like the provider name and design abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card. Each design card reveals crucial details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if appropriate), indicating that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to see the design details page.

    The design details page consists of the following details:

    - The design name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab consists of essential details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you release the model, it's recommended to evaluate the design details and license terms to validate compatibility with your use case.

    6. Choose Deploy to continue with release.

    7. For Endpoint name, use the immediately generated name or create a custom one.
  1. For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, enter the variety of circumstances (default: 1). Selecting proper instance types and counts is essential for expense and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this design, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the design.

    The deployment process can take a number of minutes to complete.

    When deployment is total, your endpoint status will alter to InService. At this point, the design is all set to accept inference demands through the endpoint. You can monitor the deployment progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is total, you can invoke the model utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the required AWS approvals and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as revealed in the following code:

    Clean up

    To avoid undesirable charges, finish the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design utilizing Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace releases.
  5. In the Managed deployments section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the appropriate deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business develop innovative options utilizing AWS services and accelerated compute. Currently, he is focused on developing strategies for fine-tuning and optimizing the reasoning efficiency of large language designs. In his spare time, Vivek takes pleasure in hiking, watching movies, and trying different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about developing options that help customers accelerate their AI journey and unlock company worth.